Learning Predictive Structures for Semantic Role Labeling of NomBank
نویسندگان
چکیده
This paper presents a novel application of Alternating Structure Optimization (ASO) to the task of Semantic Role Labeling (SRL) of noun predicates in NomBank. ASO is a recently proposed linear multi-task learning algorithm, which extracts the common structures of multiple tasks to improve accuracy, via the use of auxiliary problems. In this paper, we explore a number of different auxiliary problems, and we are able to significantly improve the accuracy of the NomBank SRL task using this approach. To our knowledge, our proposed approach achieves the highest accuracy published to date on the English NomBank SRL task.
منابع مشابه
Semantic Role Labeling of NomBank: A Maximum Entropy Approach
This paper describes our attempt at NomBank-based automatic Semantic Role Labeling (SRL). NomBank is a project at New York University to annotate the argument structures for common nouns in the Penn Treebank II corpus. We treat the NomBank SRL task as a classification problem and explore the possibility of adapting features previously shown useful in PropBank-based SRL systems. Various NomBank-...
متن کاملSemantic Role Labeling of Implicit Arguments for Nominal Predicates
Nominal predicates often carry implicit arguments. Recent work on semantic role labeling has focused on identifying arguments within the local context of a predicate; implicit arguments, however, have not been systematically examined. To address this limitation, we have manually annotated a corpus of implicit arguments for ten predicates from NomBank. Through analysis of this corpus, we find th...
متن کاملImproving Implicit Semantic Role Labeling by Predicting Semantic Frame Arguments
Implicit semantic role labeling (iSRL) is the task of predicting the semantic roles of a predicate that do not appear as explicit arguments, but rather regard common sense knowledge or are mentioned earlier in the discourse. We introduce an approach to iSRL based on a predictive recurrent neural semantic frame model (PRNSFM) that uses a large unannotated corpus to learn the probability of a seq...
متن کاملSemantic Dependency Parsing of NomBank and PropBank: An Efficient Integrated Approach via a Large-scale Feature Selection
We present an integrated dependencybased semantic role labeling system for English from both NomBank and PropBank. By introducing assistant argument labels and considering much more feature templates, two optimal feature template sets are obtained through an effective feature selection procedure and help construct a high performance single SRL system. From the evaluations on the date set of CoN...
متن کاملبرچسبزنی خودکار نقشهای معنایی در جملات فارسی به کمک درختهای وابستگی
Automatic identification of words with semantic roles (such as Agent, Patient, Source, etc.) in sentences and attaching correct semantic roles to them, may lead to improvement in many natural language processing tasks including information extraction, question answering, text summarization and machine translation. Semantic role labeling systems usually take advantage of syntactic parsing and th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007